[Technical Data]
Proper Bolt Axial Tightening Force and Proper Tightening Torque
[Technical Data]
Strength of Bolts, Screw Plugs and Dowel Pins
1)Tensile Load Bolt
$=\sigma t \times A s \cdots \cdots(1)$
$=\pi d^{2} \sigma t / 4 \cdots(2)$

ExTThe proner siz of a hexagon sccket head can screws which is to beara r reneated tensile load pulustino

$0.7 \times 112 \times 20$.

\bar{a}	Tightening Method	Surface Condition		Lubrication
		Bolts	Nuts	
1.25	Torque Wrench	Marganese Prosphate	Not treated or Treated with Pospphate.	Lubricated with oil or MoS2 paste
1.4	Torque Wrench	Not teated or Treatedwith Pospondit.		
	Limited-Torque Wrench			
1.6	Impact Wrench			
1.8	Torque Wrench		No Treatm	Unlubricat
	Limited-Torque Wrench	with Phosphate.		Unlubricat

Finol incrixion 0.185 SCM-AL FC-AL AL-SUS

$0.215 \mathrm{AL}-\mathrm{AL}$
Strength Class
seab But 0.35 STOC-SCM SCM-SCM FC-S10C FC-SCM AL

-The minimum value of tensile sterength is $1220 \mathrm{~N} / \mathrm{m}^{2}\left\{124 \mathrm{~kg} / \mathrm{mm}^{2}\right\}$

\square Initial Tightening Force and Tightening Torque
Strength Class

Nominal of Thread	$\begin{array}{\|c\|} \hline \text { Effective } \\ \text { Sectional Area } \\ \text { As } \\ \mathrm{mm}^{2} \end{array}$	Strength Class								
		12.9			10.9			8.8		
		Yield Load	linidiontering Foree	Tightering Torque	Yield Load	hidid Toptering Foree	Tightening Torque	Yield Load	Initid Toptering foree	Tightering Torue
		kgf	kgf	kgf $\cdot \mathrm{cm}$	kgf	kgf	kgf.cm	kgf	kgf	kgf $\cdot \mathrm{cm}$
M 3 $\times 0.5$	5.03	563	394	17	482	338	15	328	230	10
M 4×0.7	8.78	983	688	40	842	589	34	573	401	23
M 5×0.8	14.2	1590	1113	81	1362	953	69	927	649	47
M 6x1	20.1	2251	1576	138	1928	1349	118	1313	919	80
M 8×1.25	36.6	4099	2869	334	3510	2457	286	2390	1673	195
M10×1.5	58	6496	4547	663	5562	3894	567	3787	2651	386
M12x1.75	84.3	9442	6609	1160	8084	5659	990	5505	3853	674
M14×2	115	12880	9016	1840	11029	7720	1580	7510	5257	1070
M16x2	157	17584	12039	2870	15056	10539	2460	10252	7176	1670
M18×2.5	192	21504	15053	3950	18413	12889	3380	12922	9045	2370
M20 2.5	245	27440	19208	5600	23496	16447	4790	16489	11542	3360
M22×2.5	303	33936	23755	7620	29058	20340	6520	20392	14274	4580
M24×3	353	39536	27675	9680	33853	23697	8290	23757	16630	5820

Note) - Tightening Conditions:Use of a torque wrench(Lubricated with Oil, Torque Coefficient $\mathrm{k}=0.17$, Tightening Coefficient $\mathrm{Q}=1.4$)
The table is an excerpt trom a catalog of Kyokuto Seisakusho Co.,, tod.
(1)Using Equation

As=Pt/ot
 $89\left[m m^{2}\right.$

- finding a value greater than the result
of the equation in the Effective Sectiona
rea column in the table on right,
$5,14.2[\mathrm{~mm}$] , should be selected.
6, allowable load of 213 kgf , should be selected from the column for
strength class 12.9 , with the fatigue strength taken into account.

2) If the bolt, like a stripper bolt, is to bear a tensile impact load, the right size should be selected from the fatigue strength column.(Under a load of 200 kgf , stripper bolt made of SCM435, 33 to 38 HRC, strength class 10.9
By finding a value greater than the allowable load of 200 kgf in the Strength Class 10.9 column in the table on right, M8, 318 kkgff , should be selected. Hence, MSB10 with the M 8 threaded portion and an axial diameter of 10 mm should be selected.
If it is to bear a shearing load, a dowel pin should also be used.

Strength of Screw Plug

When screw plug MSW30 is to bear an impact load, allowable load P should be determined The materials of MSW30 are 545 C , 34 to 43 HRC , tensile strength ot $65 \mathrm{~kg} / / \mathrm{mm}^{2}$.)

meter	Area $\mathrm{A}=$ Root Diameter $\mathrm{d} 1 \times \pi \times \mathrm{L}$
becaluluted	(Root Diameter di $\sim M-$ P)
	$\mathrm{A}=(\mathrm{M}-\mathrm{P}) \pi \mathrm{L}=(30-1.5) \pi \times 12$ $=1074\left[\mathrm{~mm}^{2}\right]$
$\mathrm{d}=\tau \mathrm{t} \times \mathrm{A}$	
$=3.9 \times 107.4$	Shearing Stress $\sim 0.8 \times$ Yield Stress
=4190[kgf]	$=46.6$
able shearing force	Allowable Shearing Stress $\tau t=$ Shearing Stress/Safety Factor12 $=46.6 / 12=3.9\left[\mathrm{kgf}^{2} / \mathrm{mm}^{2}\right]$

Fin tre alowable stearing force thread if a tap is made of soft material.

Strength of Dowel Pins

The proper size of a dowel pin under repeated shearing load of 800 kgf(Pulsating)
should be determined.(The material of Dowel Pins is SUJ2. Hardness 58HRC~)
$=\sqrt{(4 \times 800) /(3.14 \times 19.2)}$

$$
\begin{aligned}
& \text { Yield Stress for SUJ2 } \mathrm{ab}=120\left[\mathrm{kgf} / \mathrm{mm}^{2}\right] \\
& \text { Allowable Shearing Strength } \tau=\sigma b \times 0.8 / \text { Safety Factor } \alpha \\
& =19.2\left[\mathrm{kgg} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

≈ 7.3
or a larger size should be selected for MS.

The yield stress, strength class 12.9, is $\sigma b=112\left[\mathrm{~kg} / \mathrm{mm} \mathrm{m}^{2}\right]$. Allowable Stess $\sigma t=\sigma$ b/Saxiety Factorf(rion the above tade Satey Factor 5) $=112 / 5$

Nominal of Thread	Effectie SectionA Aea As $\mathbf{m m}^{2}$	Strength Class				
		12.9		10.9		
		$\begin{array}{\|c\|c\|} \hline \text { Faitigue Stengut Allowable Lood } \\ \hline \mathrm{kgf} / \mathbf{m m}^{2} & \mathbf{k g f} \\ \hline \end{array}$		Fative Stengith $\mathrm{kgg} / \mathrm{mm}^{2}$	Alowade	
				kgf		
M 4	8.78	13.1	114		9.1	79
M 5	14.2	11.3	160	7.8	111	
M 6	20.1	10.6	213	7.4	149	
M 8	36.6	8.9	326	8.7	318	
M10	58	7.4	429	7.3	423	
M12	84.3	6.7	565	6.5	548	
M14	115	6.1	702	6	690	
M16	157	5.8	911	5.7	895	
M20	245	5.2	1274	5.1	1250	
M24	353	4.7	1659	4.7	1659	

The dowel pin must not be loaded.
 extra pins can be reduced.
uniform size, the number of the necessary tools and
Typical strength calculations are presented here. In practice, further conditions including hole-to-hole pitch precision, hole perpendicularity, surface roughness, circuarity, plate material, parallelism, quenching or non-quenching, precision of the press, product output, wear of tools should be considered. Hence the values in these examples are typical but not guaranteed values.(Not guaranteed values)

