[Technical Data] **Proper Bolt Axial Tightening Force and Proper Tightening Torque**

Axial Tightening Force for Bolt and Fatigue Limit

- · The proper axial tightening force for a bolt should be calculated within an elasticity range up to 70% of the rated yield strength when the torque method is used.
- · The fatigue strength of bolt under repeated load should not exceed the specified tolerance.
- · Do not let the seat of a bolt or nut dent the contact area.
- · Do not break the tightened piece by tightening.

A bolt is tightened by torque, torque inclination rotating angle, stretch measurement and other methods. The torque method is widely used due to its simplicity and convenience.

Calculation of Axial Tightening Force and Tightening Torque

The relation between the axial tightening force and Ff is represented by Equation(1)below: k : Torque Coefficient

Tightening torque TfA can be obtained by using the following formula(2).

 $T_{fA}=0.35k(1+1/Q)_{O}y \cdot As \cdot d.....(2)$

d: Nominal Diameter of Bolt[cm] Q: Tightening Coefficient

σy: Tensile strength(When the strength class is 12.9, it is 112kgf/mm²)

As: Effective Sectional Area of the Bolt[mm2]

Calculation Example

Proper torque and axial force for Mild steel pieces tightened together by means of a hexagon socket head cap screw. M6(strength class 12.9), with the pieces lubricated with oil can be calculated.

· Proper Torque, by using Equation(2)

· Axial Force Ff, by using Equation(1) Ff=0.7× σ y×As

Q

1.25

1.4

1.6

1.8

TfA=0.35k (1+1/Q) $\sigma y \cdot As \cdot d$ $=0.35 \cdot 0.17 (1+1/1.4) 112 \cdot 20.1 \cdot 0.6$

0.7×112×20.1 1576[kgf]

=138 $[kgf \cdot cm]$

Surface 1	Treatment for Bolt and 1	orque Coefficient Depend	lent on the Combination	of Material for Area to be	Fastened and Material of Fe	male Thre
-----------	--------------------------	--------------------------	-------------------------	----------------------------	-----------------------------	-----------

Bolt Surface Treatment Lubrication	Torque Coefficient K	Combination of material for area to be fastened and material for female thread (a) (b) (a)						
	0.145	SCM-FC FC-FC SUS-FC						
	0.155	S10C-FC SCM-S10C SCM-SCM FC-S10C FC-SCM						
Steel Bolt	0.165	SCM-SUS FC-SUS AL-FC SUS-S10C SUS-SCM SUS-SUS						
Black Oxided	0.175	S10C-S10C S10C-SCM S10C-SUS AL-S10C AL-SCM						
Film Oil Lubrication	0.185	SCM-AL FC-AL AL-SUS						
	0.195	S10C-AL SUS-AL						
	0.215	AL-AL						
	0.25	S10C-FC SCM-FC FC-FC						
Steel Bolt	0.35	S10C-SCM SCM-SCM FC-S10C FC-SCM AL-FC						
Black Oxided Film Unlubricated	0.45	S10C-S10C SCM-S10C AL-S10C AL-SCM						
	0.55	SCM-AL FC-AL AL-AL						
S10C:Mild steel no	S10C:Mild steel not thermally refined SCM:Thermally Refined Steel(25HRC) FC:Cast Iron(FC200)AI :Aluminum SUS:Stainless Steel							

Initial Tightening Force and Tightening Torque

_	EX. 12.9
_	Tensile Strength(Yield Stress):90% of the minimum value of tensile strength
_	The minimum value of tensile strength is 1220N/mm ² { 124kgf/mm ² }
	10.9

■Standard Value of Tightening Coefficient Q

Tightening Method

imited-Torque Wrench

Limited-Torque Wrench

Torque Wrench

Torque Wrench

Impact Wrench

Torque Wrench

Strength Class

Tensile Strength(Yield Stress):90% of the minimum value of tensile strength The minimum value of tensile strength is 1040N/mm² { 106kgf/mm² }

Surface Condition

Nuts

Not treated or Treated

with Phosphate.

No Treatment

Bolts

Manganese Phosphate

ot treated or Treated

Not treated or Treated

with Phosphate.

Lubrication

Lubricated with

oil or MoS2 paste

Unlubricated

annual rightening Force and rightening forque										
	Effective	Strength Class								
Nominal	Sectional Area As mm²	12.9			10.9			8.8		
of Thread		Yield Load	Initial Tightening Force	Tightening Torque	Yield Load	Initial Tightening Force	Tightening Torque	Yield Load	Initial Tightening Force	Tightening Torque
		kgf	kgf	kgf · cm	kgf	kgf	kgf · cm	kgf	kgf	kgf⋅cm
M 3×0.5	5.03	563	394	17	482	338	15	328	230	10
M 4×0.7	8.78	983	688	40	842	589	34	573	401	23
M 5×0.8	14.2	1590	1113	81	1362	953	69	927	649	47
M 6×1	20.1	2251	1576	138	1928	1349	118	1313	919	80
M 8×1.25	36.6	4099	2869	334	3510	2457	286	2390	1673	195
M10×1.5	58	6496	4547	663	5562	3894	567	3787	2651	386
M12×1.75	84.3	9442	6609	1160	8084	5659	990	5505	3853	674
M14×2	115	12880	9016	1840	11029	7720	1580	7510	5257	1070
M16×2	157	17584	12039	2870	15056	10539	2460	10252	7176	1670
M18×2.5	192	21504	15053	3950	18413	12889	3380	12922	9045	2370
M20×2.5	245	27440	19208	5600	23496	16447	4790	16489	11542	3360
M22×2.5	303	33936	23755	7620	29058	20340	6520	20392	14274	4580
M24×3	353	39536	27675	9680	33853	23697	8290	23757	16630	5820

(Note) · Tightening Conditions: Use of a torque wrench (Lubricated with Oil, Torque Coefficient k=0.17, Tightening Coefficient Q=1.4)

- · The torque coefficient varies with the conditions of use. Values in this table should be used as rough referential values.
- The table is an excerpt from a catalog of Kyokuto Seisakusho Co., Ltd.

2849

[Technical Data] Strength of Bolts, Screw Plugs and Dowel Pins

Strength of Bolt

1)Tensile Load Bolt

 $P = \sigma t \times As \cdots (1)$ $=\pi d^2 \sigma t/4 \cdots (2)$ Pt : Tensile Load in the Axial Direction [kgf]

σb: Yield Stress of the Bolt [kgf/mm²]

 σt : Allowable Stress of the Bolt [kgf/mm²] $(\sigma t = \sigma b/Safetv Factor\alpha)$

As : Effective Sectional Area of the Bolt [mm2] $As = \pi d^2/4$

d : Effective Dia. of the Bolt (Core Dia.) [mm]

Safety Factor of Unwin Based on Tensile Strength

Materials	Static	Repeate	Impact		
Materiais	Load	Pulsating	Reversed	Load	
Steel	3	5	8	12	
Cast Iron	4	6	10	15	
Copper, Soft Metal	5	5	9	15	

Allowable Stress = $\frac{\text{Reference Strength}}{\text{Safety Factor} \alpha}$ Reference Strength: Yield Stress for Ductile Material Fracture Stress for Fragile Material

(Ex.)The proper size of a hexagon socket head cap screws, which is to bear a repeated tensile load(pulsating) at P=200 kgf, should be determined. (The hexagon socket head cap screws are SCM435, 38 to 43 HRC, strength class 12.9) (1)Using Equation

> As=Pt/σt =200/22.4 =8.9 [mm²]

... By finding a value greater than the resulof the equation in the Effective Sectional

Area column in the table on right.

M5. 14.2[mm2], should be selected.

M6, allowable load of 213 kgf, should be selected from the column for strength class 12.9, with the fatigue strength taken into account.

2) If the bolt, like a stripper bolt, is to bear a tensile impact load, the right size should be selected from the fatigue strength column. (Under a load of 200kgf, stripper bolt made of SCM435, 33 to 38 HRC, strength class 10.9)

By finding a value greater than the allowable load of 200 kgf in the Strength Class 10.9 column in the table on right, M8, 318[kgf], should be selected. Hence, MSB10 with the M8 threaded portion and an axial diameter of 10 mm should be selected.

If it is to bear a shearing load, a dowel pin should also be used

Strength of Screw Plug

When screw plug MSW30 is to bear an impact load, allowable load P should be determined. (The materials of MSW30 are S45C, 34 to 43 HRC, tensile strength ot 65kgf/mm².)

If M S W is shorn at a spot within the root diameter section and is broken, allowable load P can be calculated as shown below.

Allowable Load $P=\tau t \times A$

 $=3.9\times107.4$ =4190[kgf]

Find the allowable shearing force base on the core diameter of female thread if a tap is made of soft material. Area A=Root Diameter d1×π×L (Root Diameter d1≈M-P) $A=(M-P)\pi L=(30-1.5)\pi \times 12$ =1074 [mm²] Yield Stress≈0.9×Tensile Strength σb=0.9×65=58.2 Shearing Stress≈0 8×Yield Stress Allowable Shearing Stress *T*t=Shearing Stress/Safety Factor12

=46.6/12=3.9 [kgf/mm²]

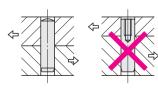
The yield stress, strength class 12.9, is $\sigma b = 112 [kgf/mm^2]$. Allowable Stress σ t= σ b/Safety Factor(from the above table Safety Factor 5) =112/5 =22.4[kgf/mm²]

Fatigue Strength of Bolt(Thread:Fatigue Strength is 2 million times)

	Effective	Strength Class					
Nominal	Sectional Area As	12	2.9	10.9			
of Thread		Fatigue Strength†	Allowable Load	Fatigue Strength†	Allowable Load		
	mm ²	kgf/mm²	kgf	kgf/mm²	kgf		
M 4	8.78	13.1	114	9.1	79		
M 5	14.2	11.3	160	7.8	111		
M 6	20.1	10.6	213	7.4	149		
M 8	36.6	8.9	326	8.7	318		
M10	58	7.4	429	7.3	423		
M12	84.3	6.7	565	6.5	548		
M14	115	6.1	702	6	690		
M16	157	5.8	911	5.7	895		
M20	245	5.2	1274	5.1	1250		
M24	353	4.7	1659	4.7	1659		
Fatigue etrangenties a revision of an excernt from "Fetimated Fatigue Limite of							

Small Screws, Bolts and Metric Screws for Nuts" (Yamamoto)

Strength of Dowel Pins


The proper size of a dowel pin under repeated shearing load of 800 kgf(Pulsating) should be determined.(The material of Dowel Pins is SUJ2. Hardness 58HRC~)

 $P=A\times \tau$ $=\pi D^2 \tau / 4$ $D=\sqrt{(4P)/(\pi\tau)}$ $=\sqrt{(4\times800)/(3.14\times19.2)}$

Yield Stress for SUJ2 σ b=120 [kaf/mm²] Allowable Shearing Strength $\tau = \sigma b \times 0.8$ /Safety Factor α $=120 \times 0.8/5$ =19.2 [kgf/mm²]

.: D8 or a larger size should be selected for MS.

extra pins can be reduced.

The dowel pin must not be loaded.

If the dowel pins are of a roughly uniform size, the number of the necessary tools and

Typical strength calculations are presented here. In practice, further conditions including hole-to-hole pitch precision, hole perpendicularity, surface roughness, circularity, plate material, parallelism, quenching or non-quenching, precision of the press, product output, wear of tools should be considered. Hence the values in these examples are typical but not guaranteed values. (Not guaranteed values)